程序员开发实例大全宝库

网站首页 > 编程文章 正文

图像处理:OpenCV3源代码文件解析(opencv源代码怎么看)

zazugpt 2024-08-29 02:17:03 编程文章 18 ℃ 0 评论

引言

结合冈萨雷斯的《数字图像处理》和Opencv3.0,学习图像处理算法有一段时间了,知道了函数怎么使用,但不知道opencv所用的函数源代码是如何编写的,“知其然,也要知其所以然”,闲暇之日,研究下源代码的编写,纵然不能全部看懂或者掌握,有收获就是好的。

有诗为证,诗曰:

图像处理有本质,二维数组是内涵。

卷积频域来滤波,轮廓分割形态学。

书山有路勤为径,兴趣使然来做舟。

为识庐山真面目,学习源码实践多。

源代码位置

假如你将opencv3.0解压到D:opencv3.0,那么路径为:

D:\opencv3.0\opencv\sources

文件夹modules和samples是我们重点学习的内容。

图1 文件夹存放内容如下。

重点文件夹:modules和samples。

modules文件夹

modules文件夹存放了如下内容,主要分为CPU模块和CUDA模块。

  1. CPU模块

? alib3d: 相机标定及三维重建。相机标定用于取出相机自身缺陷导致的画面形变,还原真实的场景,确保计算的准确性。三维重建通常用在双目视觉(立体视觉),即两个标定后的摄像头观察同一个场景,通过计算两幅画面中的相关性来估计像素深度。

? core: 核心功能模块,定义了基本的数据结构,包括最重要的 Mat 类、XML 读写、OpenGL三维渲染等。这个模块应该在入门之后学习。

? features2d: 包含 2D 特征值检测的框架。包含各种特征值检测器及描述子,如 FAST、MSER、OBRB、BRISK 等。各类特征值拥有统一的算法接口,因此在不影响程序逻辑的情况下可以替换替换。

? flann: 用于在多维空间内聚类及搜索的近似算法,做图像检索的开发者对它不会陌生。

? highgui: 高级图形界面,包括用户界面、Qt。

? imgcodecs:对图像文件编解码、读写操作

? imgproc: 全称为 Image Processing,即图像处理,包括图像滤波、集合图像变换、直方图计算、形状描述子等。图像处理是计算机视觉的重要工具,重点学习。

? ml: 全称为 Machine Learning,即机器学习。包括统计模型、K 最近邻、支持向量机、决策树、神经网络等经典的机器学习算法。

? objdetect:物体检测模块,包括 Haar 分类器、SVM 检测器及文字检测。

? photo: 计算摄影学,包括图像修补、去噪、HDR 成像、非真实感渲染等。如果读者想实PS的高级功能,那么这个模块必不可少。

? shape: 形状匹配算法模块,用于描述形状、比较形状。

? stitching: 图像拼接,可用于制作全景图。

? superres: 全称为 Super Resolution,用于增强图像的分辨率。

? video: 视频分析模块,包括背景提取、光流跟踪、卡尔曼滤波等,做视频监控的开发者会经常使用这个模块。

? videoio:视频编解码、读写操作

? videostab: 全称为Video Stabilization,用于解决相机移动拍摄时视频不够稳定的问题。

? viz: 三维可视化模块。可以认为这个模块实现了一个简单的三维可视化引擎,有各种 UI 空间和键盘、鼠标交互方式。底层实现基于 CTK 这个第三方库。

2.CUDA模块

? cuda: CUDA- 加速的计算机视觉算法,包括数据结构 cuda::GpuMat、基于 cuda 的相机标定及三维重建等。

? cudaarithm: CUDA- 加速的矩阵运算模块。

? cudabgsegm: CUDA- 加速的背景分割模块,通常用于视频监控。

? cudacodec: CUDA- 加速的视频编码与解码。

? cudafeatures2d: CUDA- 加速的特征检测与描述模块,与 features2d/ 模块功能类似。

? cudafilters: CUDA- 加速的图像滤波。

? cudaimgproc: CUDA- 加速的图像处理算法,包含直方图计算、霍夫变换等。

? cudaoptflow: CUDA- 加速的光流检测算法。

? cudastereo: CUDA- 加速的立体视觉匹配算法。

? cudawarping: 实现 CUDA- 加速的快速图像变换,包括透视变换、旋转、改变尺寸等。

samples文件夹

android: Android 平台的范例。既有完全是 Java 的工程,也有完全是 C++ 的工程,也有更为常见的 Java 与 C++ 共存的工程。

? cpp: 由于 OpenCV 是一款 C++ 库,因此 C++ 的返利是最多的,后面将重点介绍。

? data: 示例程序要用到的数据

? directx: directx (d3d) 是微软的私有三维图像 API,这个文件夹中的范例覆盖了 d3d9、d3d10、d3d11.

? gpu: 利用 cuda 加速的范例。

? java: OpenCV 3 官方支持 Java 语言绑定,因此这里演示如何使用 Java 版本的 OpenCV。

? python: OpenCV 3 官方支持 Python 语言绑定,因此这里演示使用 Python 2 版本的范例。

? tapi: tapi 是OpenCV 3 的一个新特性,使用 cv::UMat 替代cv::Mat,实现 CPU 和 GPU 的运算使用统一的接口,不再需要显式地在 CPU 和 GPU 之间传递数据,方便开发人员。

? winrt: Windows RT 平台的范例,开发语言是微软的 C++ “方言”.

.cpp文件功能汇总(压轴戏登场)


?tutorial_code/: opencv教程代码\

? 3calibration.cpp: 同时标定三台水平放置的相机。

? bagofwords_classification.cpp: 使用图像检测实现简易的图像搜索功能。

? bgfg_gmg.cpp: 演示GMG 背景检测算法的使用方式。

? bgfg_segm.cpp: 演示高斯混合背景检测算法的使用方式。

? brief_match_test.cpp: 使用 BRIEF 特征值来匹配两张图像。

? build3dmodel.cpp: 演示如何使用基础矩阵和特征值来创建三维模型。

? calibration.cpp: 完整的多用途标定程序。

? calibration_artificial.cpp: 在程序中生成一个虚拟的相机,并进行标定。

? camshiftdemo.cpp: 读取实时的摄像头数据,并演示基于均值偏移算法的视频跟踪。

? chamfer.cpp: 使用Chamfer 算法匹配两副边缘图像。

? cloning_demo.cpp: 命令行模式的图像克隆。

? cloning_gui.cpp: 图形界面交互的图像克隆。

? connected_components.cpp: 查找并绘制图像中的连通区域。

? contours2.cpp: 查找并绘制图像中的轮廓。

? convexhull.cpp: 查找并绘制由点的集合组成的凸包。

? cout_mat.cpp: 使用cout 来输出各种格式化的 Mat 对象。

? create_mask.cpp: 演示如何创建黑白掩码图像。

? dbt_face_detection.cpp: 基于检测的人脸跟踪代码。

? delaunay2.cpp: 通过鼠标交互式地生成 Delaunay 三角形。

? demhist.cpp: 演示直方图的用法。

? descriptor_extractor_matcher.cpp: 演示 features2d 检测框架的用法。

? detection_based_tracker_sample.cpp: 与 dbt_face_detection.cpp 类似。

? detector_descriptor_evaluation.cpp: 评估各种特征检测器和描述子。

?detector_descriptor_matcher_evaluation.cpp:评估各种特征检测器和匹配器。

? dft.cpp: 演示一幅图像的离散傅里叶变换。

? distrans.cpp: 显示边缘图像的距离变换值。

? drawing.cpp: 演示绘画和文字显示功能。

? edge.cpp: 演示Canny 边缘检测。

? em.cpp: 对随机生成的数据点进行 EM 聚类。

? fabmap_sample.cpp: 演示 FAB-MAP 图像检索算法。

? facerec_demo.cpp: 人脸识别。

? fback.cpp: 实时的Farneback 光流跟踪。

? ffilldemo.cpp: 演示 floodFill() 像素填充算法。

? filestorage.cpp: 演示序列化到外部文件,如yml、xml等。

? fitellipse.cpp: 将轮廓点匹配到椭圆。

? freak_demo.cpp: 演示 FREAK 特征值的用法。

? gencolors.cpp: 演示 generateColors()。

? generic_descriptor_match.cpp: 基于 SURF 的两幅图像间的匹配。

? grabcut.cpp: 演示GrabCut 分割算法。

? houghcircles.cpp: 用霍夫算法检测圆。

? houghlines.cpp: 用霍夫算法检测直线。

? hybridtrackingsample.cpp: 混合跟踪算法(Hybrid Tracker)的演示。

? image.cpp: 来回转换cv::Mat 和 IplImage。

? image_alignment.cpp: 演示 findTransformECC() 函数。

? image_sequence.cpp: 使用 VideoCapture 对象读取序列帧。

? imagelist_creator.cpp: 创建图像列表到 xml 文件。

? inpaint.cpp: 使用鼠标交互地进行图像修补。

? intelperc_capture.cpp: Intel 感知计算设备相关的函数。

? kalman.cpp: 使用卡尔曼滤波进行二维跟踪。

? kmeans.cpp: Kmeans 聚类算法的演示。

? laplace.cpp: 拉普拉斯边缘检测。

? latentsvm_multidetect.cpp: latentSVM 检测器。

? letter_recog.cpp: 字母识别。

? linemod.cpp: 基于OpenNI 的体感设备应用。

? lkdemo.cpp: 演示Lukas-Kanade光流法。

? logpolar_bsm.cpp: 演示 LogPolar 盲点模型。

? lsd_lines.cpp: LSD 线段检测。

? matcher_simple.cpp: SURF 特征检测。

? matching_to_many_images.cpp: 一对多的特征检测。

? meanshift_segmentation.cpp: 演示基于均值漂移的色彩分割函数——meanShiftSegmentation()

? minarea.cpp: 寻找最小包围盒、包围圆

? morphology2.cpp: 形态学图像处理

? npr_demo.cpp: 演示各种非真实感渲染效果

? opencv_version.cpp: 输出 OpenCV 库的版本号

? openni_capture.cpp: 演示 OpenNI 相关的体感设备

? pca.cpp: 基于 PCA 的人脸识别

? peopledetect.cpp: 基于 cascade 或 hog 进行物体(人)检测

? phase_corr.cpp: 演示 phaseCorrelate() 函数

? points_classifier.cpp: 演示各种机器学习算法

? segment_objects.cpp: 实时地在视频或相机画面中检测前景物体

? select3dobj.cpp:在一个有标定棋盘的桌子上,使用3D Box标记一个对象,在所有序列帧中,只要照相机可以看到棋盘,就可以跟踪对象,并用Box分割对象

? shape_example.cpp: 比较并检索形状

? shape_transformation.cpp: 用 SURF 特征值检测形状并进行变换

? squares.cpp: 检测图像中的方块形状。

? starter_imagelist.cpp: 加载一个ImageList(由imagelist_creator.cpp产生)

? stereo_calib.cpp: 双目视觉的标定

? stereo_match.cpp: 计算左右视觉的图像的差异,生成点云文件。

? stitching.cpp: 演示图像拼接算法。

? stitching_detailed.cpp: 演示更多参数的图像拼接算法。

? train_HOG.cpp: 训练 HOG 分类器

? tree_engine.cpp: 演示如何使用不同的决策树和森林包括Boosting和随机树

? videostab.cpp: 演示 videostab 中各个参数的用法。

? watershed.cpp: 演示著名的分水岭图像分割算法。

结语

编程本就是一个练习加总结的过程,不善于总结的编程人员不是一个好工程师。

研读源代码,既可以学习专家们的编程技巧(借以对C++再次学习),然后结合对函数的调用,理解是不是更深刻一点?

Tags:

猜你喜欢

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表